## References

Atria, A. M., Blasquez, I. \& Spodine, E. (1982). Bol. Soc. Chil. Quím. 27, 82-85.
Cusmano Priolo, F., Rotondo, E., Rizzardi, G., Bruno, G. \& Bombieri, G. (1983). Acta Cryst. C39, 550-552.
Escobar, C. \& Garland, M. T. (1983). Acta Cryst. C39, 1463-1465.
Escobar, C. \& Garland, M. T. (1984). Acta Cryst. C40, 889-891.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 Structure Determination Package. A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Determination. In Computing in Crystallography, edited by H. SCHENK, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.
Galésić, N., Trojko, R., Cimerman, Z. \& Štefanac, Z. (1984). Acta Cryst. C40, 232-235.
Hatfield, W. E. \& Bunger, F. L. (1969). Inorg. Chem. 8(5), 1194-1195.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Mahmoud, M. R. \& El-Haty, M. T. (1980). J. Inorg. Nucl. Chem. 42(3), 349-353.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Moustakali-Mavridis, I. \& Hadjoudis, E. (1978). Acta Cryst. B34, 3709-3715.
Moustakali-Mavridis, I., Hadjoudis, E. \& Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.

Osipov, O. A., Minkin, V. I., Verkhovodova, D. Sh. \& KnyazhanskiI, M. I. (1967). Russ. J. Inorg. Chem. 12(6), 814-815.
Rotondo, E., Cusmano Priolo, F., Bombieri, G. \& Bruno, G. (1984). Acta Cryst. C40, 960-962.

Spodine, E. \& Atria, A. M. (1984). Bol. Soc. Chil. Quim. 29, 159-161.
Stout, G. H. \& Jensen, L. H. (1968). In X-ray Structure Determination. New York: Macmillan.

Acta Cryst. (1985). C41, 858-860

# Structure of Bis[2-(salicylideneamino)ethanolato]copper(II), $\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2}\right)_{2}\right]$ 

By Françoise Nepveu and Helmut Paulus<br>Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstrasse 20, D-6100 Darmstadt, Federal Republic of Germany

(Received 30 October 1984; accepted 11 February 1985)


#### Abstract

M_{r}=391.9\), monoclinic, $\quad P 2_{1} / c, \quad a=$ 18.323 (4), $\quad b=4.813$ (1), $\quad c=19.770$ (4) $\AA, \quad \beta=$ $98.84(1)^{\circ}, V=1722.8 \AA^{3}, Z=4, D_{m}=1.49(2), D_{x}$ $=1.511 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $1.293 \mathrm{~mm}^{-1}, \quad F(000)=812, \quad T=293 \mathrm{~K}, \quad$ final $R=$ 0.029 for 2072 observed reflections. The asymmetric unit consists of two independent half molecules ( $A$ and $B$ ) which are similar. Each of the Cu atoms has a square-planar environment with Cu bonded to two phenolic O atoms and two imino N atoms with distances $\mathrm{Cu}-\mathrm{O} 1.877$ (2), 1.882 (2) $\AA$ in molecules $A$ and $B$, respectively, and $\mathrm{Cu}-\mathrm{N} 2.010$ (2) and 1.998 (2) $\AA$. The ethanolic O atoms are not coordinated to Cu .


Introduction. The crystal structure of the title compound has been determined as a part of an investigation of the coordination properties of some Cu complexes in an attempt to correlate molecular structure and magnetic properties (Mergehenn \& Haase, 1977; Walz, Paulus, Haase, Langhof \& Nepveu, 1983). Schiff-base complexes prepared from salicylaldehyde and aminoalcohols have been characterized and different oligomeric species have been obtained (Brown \&

Wardeska, 1982, and references therein; Muhonen, 1982; Galešić, Trojko, Cimerman \& Štefanac, 1984).

Experimental. Slow evaporation of a methanolic solution containing copper(II) acetate, salicylaldehyde and 2-aminoethanol (molar ratio 1:2:2) in air gave dark-green parallelepipeds. Crystal $0.16 \times 0.27 \times$ 1.2 mm . $D_{m}$ by flotation in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CCl}_{4}$. StoeSiemens AED2 diffractometer, Mo $K \alpha$ radiation. Cell constants from the $2 \theta$ values of 62 reflections. 4671 intensities scanned in range $6.6 \leq 2 \theta \leq 45^{\circ}, 2250$ unique, $R_{\text {int }}=0.022,178$ unobserved $\left[F_{o}<2 \sigma\left(F_{o}\right)\right.$ ]. Index range $h \pm 19, k 0 / 5, l 0 / 20$. Three standard reflections measured every hour, intensity variations $<2 \%$. Numerical absorption correction, transmission factors $0.72-0 \cdot 84$. Structure determined by direct methods (MULTAN80; Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). Anisotropic refinement on $F$. H atoms from difference Fourier synthesis, placed at calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.96 \AA) ; U_{\mathrm{H}}$ fixed at $1.1 \times U_{\text {eq }}$ of the carrying atom. $(\Delta / \sigma)_{\max }=0.09$. Final difference Fourier map with peaks within $\pm 0.25 \mathrm{e}^{-3}$. Final refinement, 230 variables, gave $R=0.029, w R=0.033\left[w=1 / \sigma^{2}(F)\right]$
(c) 1985 International Union of Crystallography

Table 1. Atomic parameters

| $U_{\text {eq }}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right)$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {eq }}\left(\AA^{2}\right)$ |
| Molecule $A$ |  |  |  |  |
| $\mathrm{Cu}(1)$ | 0.0000 | 0.5000 | 0.5000 | 0.040 (2) |
| O(1) | -0.0728 (1) | 0.5571 (3) | 0.4235 (1) | 0.059 (1) |
| O(2) | 0.2023 (1) | 0.2798 (3) | 0.4204 (1) | 0.061 (1) |
| $\mathrm{N}(1)$ | 0.0486 (1) | $0 \cdot 2010$ (3) | 0.4516 (1) | 0.044 (1) |
| C(1) | -0.0872 (1) | 0.4189 (5) | $0 \cdot 3660$ (1) | 0.049 (1) |
| C(2) | -0.1509 (2) | 0.4880 (5) | 0.3199 (1) | 0.064 (2) |
| C(3) | -0.1682 (2) | 0.3537 (6) | 0.2586 (1) | 0.069 (2) |
| C(4) | -0.1237 (2) | 0.1457 (6) | 0.2401 (1) | 0.071 (2) |
| C(5) | -0.0620 (2) | 0.0724 (5) | 0.2837 (1) | 0.065 (2) |
| C(6) | -0.0421 (1) | 0.2056 (4) | 0.3472 (1) | 0.049 (1) |
| C(7) | 0.0229 (1) | $0 \cdot 1119$ (5) | 0.3912 (1) | 0.050 (1) |
| $\mathrm{C}(8)$ | $0 \cdot 1158$ (1) | 0.0623 (4) | 0.4860 (1) | 0.048 (1) |
| C(9) | $0 \cdot 1837$ (1) | 0.2396 (4) | 0.4868 (1) | 0.052 (1) |
| Molecule $B$ |  |  |  |  |
| $\mathrm{Cu}(2)$ | $0 \cdot 5000$ | 0.5000 | 0.0000 | 0.048 (1) |
| O(3) | 0.4960 (1) | 0.3472 (4) | 0.0870 (1) | 0.074 (1) |
| O(4) | 0.2691 (1) | 0.7221 (3) | -0.0938 (1) | 0.055 (1) |
| N (2) | 0.4112 (1) | 0.7346 (4) | 0.0059 (1) | 0.050 (1) |
| $\mathrm{C}(10)$ | 0.4439 (1) | 0.3549 (5) | $0 \cdot 1250$ (1) | 0.059 (2) |
| C(11) | 0.4498 (2) | $0 \cdot 1856$ (6) | $0 \cdot 1833$ (1) | 0.073 (2) |
| C(12) | 0.3967 (2) | 0.1838 (7) | 0.2245 (1) | 0.082 (2) |
| C(13) | 0.3351 (2) | 0.3513 (7) | $0 \cdot 2105$ (2) | 0.084 (2) |
| C(14) | 0.3279 (2) | 0.5230 (6) | $0 \cdot 1548$ (1) | 0.073 (2) |
| C(15) | 0.3817 (1) | 0.5272 (5) | $0 \cdot 1108$ (1) | 0.055 (2) |
| C(16) | 0.3717 (1) | 0.7156 (5) | 0.0541 (1) | 0.056 (2) |
| C(17) | 0.3866 (1) | 0.9389 (5) | -0.0483 (1) | 0.056 (2) |
| C(18) | 0.3395 (1) | $0 \cdot 8036$ (5) | -0.1084 (1) | 0.057 (2) |

for 2072 observed reflections used in the analysis. Secondary-extinction factor $1.29 \times 10^{-4}$. All calculations performed on a Data General Eclipse S 140 computer using a program package developed in the application laboratory of Stoe \& Cie (Darmstadt). Atomic scattering factors from International Tables for X-ray Crystallography (1974).

Discussion. The $\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2}\right)_{2}$ complex crystallizes with two independent molecules ( $A$ and $B$ ) in the asymmetric unit. The Cu atoms are located on special positions $[\mathrm{Cu}(1): 0 \cdot 0,0 \cdot 5,0 \cdot 5 ; \mathrm{Cu}(2): 0 \cdot 5,0 \cdot 0,0 \cdot 5]$. Final positional parameters are given in Table 1.* Molecules $A$ and $B$ have very similar geometries. Selected bond lengths and angles are reported in Fig. 1. A projection of the unit cell is shown in Fig. 2.

The ethanolic O atoms $[\mathrm{O}(2)$ in $A, \mathrm{O}(4)$ in $B]$ are not involved in the Cu coordination. The resulting bidentate ligand is coordinated to Cu via its phenolic O atom and its imino N atom. The molecules are centrosymmetric with the Cu atom at the centre. The coordination of Cu is therefore square planar consisting of two N and two O atoms from two salicylaldimine moieties.

[^0]Calculation of the least-squares plane through all atoms except $\mathrm{C}(9)$ and $\mathrm{O}(2)$ in molecule $A$ shows that the largest atomic deviation is for $\mathrm{O}(1), 0.062$ (1) $\AA$; $\mathrm{C}(9)$ and $\mathrm{O}(2)$ lie 1.306 (6) and $2 \cdot 305$ (7) $\AA$, respectively, above the plane. Molecule $B$ is less planar. The dihedral angle between the least-squares plane through all atoms except $\mathrm{Cu}(2), \mathrm{O}(3), \mathrm{O}(4), \mathrm{N}(2)$ and $\mathrm{C}(18)$, and the $\mathrm{Cu}(2), \mathrm{O}(3), \mathrm{N}(2)$ plane is $10.2(1)^{\circ} . \mathrm{C}(18)$ and $\mathrm{O}(4)$ lie -1.430 (6) and -2.104 (7) $\AA$ from the former plane. Hydrogen bonding occurs between molecules $A$ and $B$ through the ethanolic O atoms with distances $\mathrm{O}(2) \cdots \mathrm{O}(4)\left(x, 1 \frac{1}{2}-y, \frac{1}{2}+z\right)=2.726$ (2) and $\mathrm{O}(2) \cdots \mathrm{O}(4)\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)=2.742$ (2) $\AA$, linking the molecules into sheets in the $a b$ plane.


Fig. 1. Perspective view of the $\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2}\right)_{2}$ complex showing bond distances ( $\hat{A}$ ) and angles ( ${ }^{\circ}$ ) in molecules $A$ (top) and $B$ (bottom). The Cu atoms lie on inversion centres. Bond distances and angles involving Cu have e.s.d.'s of $0.002 \AA$ and $0.10^{\circ}$; other distances and angles have e.s.d.'s of $0.003-0.005 \AA$ and $0 \cdot 2-0.4^{\circ}$.


Fig. 2. View of the unit cell along b.

FN thanks the A.v. Humboldt Stiftung for the award of a fellowship. We are grateful to the Firma Stoe \& Cie, Darmstadt, in whose application laboratory data collection and calculation were carried out.

## References

Brown, J. C. \& Wardeska, J. G. (1982). Inorg. Chem. 21, 1530-1534.
Galesić, N., Trojko, R., Cimerman, Z. \& Štefanac, Z. (1984). Acta Cryst. C40, 232-235.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Mergehenn, R. \& Hadse, W. (1977). Acta Cryst. B33, 18771882.

Muhonen, H. (1982). Acta Cryst. B38, 2041-2043.
Walz, l., Paulus, H., Haase, W., langhof, H. \& Nepveu, F. (1983). J. Chem. Soc. Dalton Trans. pp. 657-664.

Acta Cryst. (1985). C41, 860-862

# Structure of Trichloro(7-8- $\eta$-morphinium)platinum(II) Hemihydrate Acetone Solvate, $\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \cdot 0 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ 

By Jean-Pierre Macquet<br>Laboratoire de Pharmacologie et de Toxicologie Fondamentales du CNRS, 205 route de Narbonne, 31400-Toulouse, France<br>and André L. Beauchamp<br>Département de Chimie, Université de Montréal, CP 6210, Succ. A, Montréal, Québec, Canada H3C 3V1

(Received 7 September 1984; accepted 24 January 1985)

Abstract. $\quad M_{r}=654 \cdot 9$, tetragonal, $\quad P 42_{1} 2, \quad a=$ 9.468 (4),$\quad c=52.30$ (1) $\AA, \quad V=4688.3 \AA^{3}, \quad Z=8$, $D_{m}=1.85(1), \quad D_{x}=1.855 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Мо $K \bar{\alpha})=$ $0.71069 \AA$ (graphite monochromator), $\mu($ Mo $K \alpha)$ $=6.42 \mathrm{~mm}^{-1}, F(000)=2552, T=293 \mathrm{~K}, R=0.039$, 1537 nonzero reflections $[I>3 \sigma(I)]$. Pt forms a square-planar complex with three Cl atoms $[\mathrm{Pt}-\mathrm{Cl}$ 2.320 (4), 2.291 (5), 2.313 (5) $\AA$ ] and the middle of the $\mathrm{C}(7)-\mathrm{C}(8)$ double bond $[\mathrm{Pt}-\mathrm{C}(7) 2 \cdot 168$ (13), $\mathrm{Pt}-\mathrm{C}(8)$ $2 \cdot 132(14) \AA]$. The $\mathrm{PtCl}_{3}$ units stand on the top of the horizontal arms of the T -shaped morphine moiety.

Introduction. In a previous paper (Macquet \& Beauchamp, 1984), we reported the preparation of the title compound and briefly commented on its crystal structure. A detailed account of the crystallographic work is given in the present paper.

Experimental. Crystals obtained as described earlier (Macquet \& Beauchamp, 1984). Density measured by flotation in $\mathrm{CCl}_{4}-\mathrm{CHBr}_{3}$. Yellow prism, 0.15 mm $(10 \overline{2}-\overline{1} 02) \times 0.18 \mathrm{~mm} \quad(001-00 \overline{1}) \times 0.42 \mathrm{~mm} \quad(0 \overline{1} 2-$ $01 \overline{2}$ ). Cell parameters derived from least-squares fit on angles for 24 reflections ( $12<\theta<16^{\circ}$ ) centered on Enraf-Nonius CAD-4 diffractometer. Laue symmetry $(4 / \mathrm{mmm})$ and systematic absences ( $00 l, l \neq 4 n ; h 00$, $h \neq 2 n ; \quad 0 k 0, \quad k \neq 2 n)$ derived from precession and
cone-axis photographs were consistent with space groups $P 4_{1} 2_{1} 2$ and $P 4_{3} 2$.

Data collected as described elsewhere (BélangerGariépy \& Beauchamp, 1980). Reflection sphere: $2 \theta \leq 50^{\circ}, 0 \leq h \leq 11, k \leq h, 0 \leq l \leq 61$. Fluctuations of 3 standards $< \pm 2 \%$. 2531 unique reflections measured, 994 unobserved $[I<3 \sigma(I)], 1537$ observed. Data corrected for the Lorentz effect, polarization and absorption (Gaussian integration, grid $10 \times$ $10 \times 10$, transmission range $0.34-0.44$ ).

Structure solved by the heavy-atom method and refined on $|F|$ by full-matrix least squares. $H$ atoms whose positions were predictable from C skeleton fixed at calculated positions ( $B=5.0 \AA^{2}$ ). Remaining H atoms neglected. Refinement of scale factor, coordinates and anisotropic temperature factors of nonhydrogen atoms. H atoms not refined, but repositioned after each cycle. $R=0.039, w R=0.044, S=1.46$ for $m=1537$ and $n=271 . w$ based on counting statistics (Authier-Martin \& Beauchamp, 1977). $\Delta / \sigma$ in last cycle, max. 0.12 , av. 0.04. Background in final difference Fourier map $0.55 \mathrm{e}^{-3}, 6$ peaks within $\pm|0 \cdot 6-1 \cdot 1| \mathrm{e} \AA^{-3}$ near Pt or Cl .

No attempt was made to refine the enantiomorphic structure (in $P_{3} 2_{1} 2$ ), since torsion angles corresponded to the known absolute configuration of morphine (Bye, 1976; Gylbert, 1973).


[^0]:    * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and a complete set of bond lengths and angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42054 ( 28 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

